Impact of the cathode supporting structure and PMT configuration on light signal

Anne CHAPPUIS – Isabelle DE BONIS – Dominique DUCHESNEAU – Laura ZAMBELLI

WA105 SB Meeting 12 October 2016

Cathode supporting structure implementation

Drawing of ¼ of the supporting structure

Reflectivity of the structure:

- Set to 0% for scintillation photons
- Varied from 0% to 100% for shifted photons

Structure implemented in LightSim:

- 1. 515mm stainless steel frames (thickness of 40mm)

 NEW: photons are not automatically killed as before
- 2. "Middle" structure composed of rectangular tubes (40x20x10mm)
- 3. "Angular" tubes are **not** implemented for the time being

Procedure to study this impact

- Simulation of $N=10^6$ photons at different positions in the detector.
- These production points cover ¼ of the detector in X-Y

-3000mm < (X and Y) < 0mm 0 < Distance to the cathode < ~6m

- For each position :
 - Computation of the weight : $weight = \frac{Number of photons hitting the PMTs}{Number of generated photons}$
 - Computation of the ratio between the two configurations : $rac{N_{\scriptscriptstyle 65\,cm}}{N_{\scriptscriptstyle 1m}}$
 - Computation of the ratio $\frac{N_{Struct}}{N_{NoStruct}}$ between the results before and after the structure implementation.

Reminder:

- Labs=∞
- What is called "reflectivity" in the next slides: only for shifted photons.
- We look at the total amount of light collected by the PMT array = Sum of 36 PMTs

Configuration 1 : PMT every 1m²

Dependence to X-coordinate (center of the tank : (X,Y)=(0,0))

50%

Configuration 1 : PMT every 1m²

Dependence to the distance to the **cathode plate**= Z position of the production point.

X=-3000mm and Y=0 (close to the field cage)

Configuration 1 : PMT every 1m²
Structure Reflectivity : 50%

The cathode supporting structure reduces the number of collected photons for $\sim 12\%$ of cases (72 productions point)

Mean ratio of the 588 different production points

	DMT Configuration	Reflectivity of the cathode supporting structure					
	PMT Configuration	0%	25%	50%	75%	100%	
$rac{N_{Struct}}{N_{NoStruct}}$	1m-spaced	0.70	0.86	1.09	1.39 1.46	1.91 2.23	
	65cm-spaced	0.70	0.85	1.04	1.31 1.34	1.73 1.87	

- The cathode supporting structure:
 - Decreases the number of collected photons for reflectivities below 50% (decrease of 30% for a total absorption)
 - Increases the number of collected photons for reflectivities greater than 50%.
 - The effect of the supporting structure is similar for both PMT configurations

Effect of the reflection on "border" structure: change only for reflectivity>50%

Comparison after the cathode supporting structure implementation (with cathode reflectivity = 50%)

Dependence to X-coordinate (center of the tank : (X,Y)=(0,0))

PMT spaced by 1m²PMT spaced by 65cm²

Comparison after the cathode supporting structure implementation (with cathode reflectivity = 50%)

Dependence to the distance to the **cathode plate**= Z position of the production point.

PMT spaced by 1m²PMT spaced by 65cm²

X=Y=0 (center of the tank)

X=-3000mm and Y=0 (close to the field cage)

Distribution of the ratio $\frac{N_{65cm}}{N_{1m}}$ for ~580 different production points (covering ½ of the detector in X-Y)

Structure Reflectivity : 50%

- In most cases, the 2nd option (PMTs spaced by 65cm²) increases the number of photons reaching the PMT array.
 - Mean ratio $\frac{N_{65cm}}{N_{1m}} = 1,30$
 - It reduces the number of photons for 4,5% of cases (26 production points)

Gain improvement going from 1m to 65cm spacing

Mean ratio of the 588 different production points

	Reflectivity of the cathode supporting structure							
	0%	25%	50%	75%	100%			
$rac{N_{65cm}}{N_{1m}}$	1.39	1.35	1.30	1.24	1.14			

- → For all reflectivities, the configuration 2 (PMT spaced by 65cm) globally increases the number of collected photons.
 - \rightarrow It decreases the number of photons only when produced **near** the field cage.

Summary

- The cathode supporting structure:
 - Decreases the number of collected photons for reflectivities below 50% (decrease of 30% for a total absorption)
 - Increases the number of collected photons for reflectivities greater than 50%.
 - The effect of the supporting structure is similar for both PMT configurations
 - → The value of the cathode supporting structure **reflectivity** is important for the light maps simulation.

• The configuration 2 (PMT spaced by 65cm) globally increases the number of collected photons independently of the cathode supporting structure reflectivity.